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Abstract. In today’s unpredictable global environment, supply chains are increasingly 

exposed to disruptions caused by armed conflicts, pandemics, extreme weather 

events, and geopolitical shocks. These conditions create severe imbalances between 

supply and demand, often pushing traditional inventory systems beyond their 

operational limits. In response to this growing complexity, this paper introduces a 

hybrid modeling approach that captures the simultaneous presence of shortage and 

overstock zones within disrupted supply networks. 

The model incorporates a stochastic disruption coefficient 𝛿𝑡, which reflects the real-

time operational degradation of the system. This allows for a more realistic simulation 

of risk accumulation and adaptive inventory behavior. The total cost function 

accounts for both holding costs and penalty costs for unmet demand. By integrating 

classical methods–such as Economic Order Quantity with Overstock Costs and 

Newsvendor models–the framework balances planning under uncertainty with 

operational flexibility. 

Simulation results reveal a two-phase cost pattern: initial disruptions drive shortage-

related losses, while overcompensation in the recovery period leads to inventory 

surpluses and rising holding costs. This double-wave dynamic underscores the need 

for responsive inventory control systems capable of adapting to both sudden and 

prolonged disruptions. 

The study contributes to the field by providing a flexible modeling tool that captures 

the nuanced cost behavior of supply chains under stress. It offers valuable insights for 

designing resilient logistics strategies, minimizing losses, and maintaining service 

continuity in volatile environments. 

Keywords: Disruptive Events, Supply Chain Shocks, Black Swan Events, 

Shock Scenario, Supply Shock, System Disruption, Failure Mode, Emergency 

Mode, Critical Incident, Critical Event, Perturbation State. 

1 Introduction 

In recent years, supply chains have faced an unprecedented range of disruptions – 

from global health crises and political conflicts to environmental disasters and market 

instabilities. These events have highlighted the limitations of conventional supply 

chain models, which often rely on stable conditions and predictable flows. In reality, 

%09%09%09%09%09%09https:/academpress.eu/index.php/ITTUM/index%0a%09%09%09%09%09


 2 

modern logistics systems operate in a far more volatile environment, where 

disturbances can ripple across networks, triggering mismatches between supply and 

demand and creating cascading operational failures (Kleindorfer & Saad, 2005; 

Ivanov et al., 2016). 

The COVID-19 pandemic, for instance, exposed how quickly global supply chains 

can unravel. As demand patterns shifted and transportation routes became 

constrained, many firms found themselves either unable to meet customer needs or 

burdened with excess inventory. This duality–shortage on one end, surplus on the 

other–reveals a critical gap in existing inventory management approaches, which 

typically model these phenomena in isolation (Passarelli et al., 2023; Sodhi & Tang, 

2021). 

While previous research has explored the role of resilience, redundancy, and 

flexibility in supply chain design (Craighead et al., 2007; Pavlov et al., 2019), there 

remains a need for models that can dynamically reflect how disruptions evolve over 

time and impact both operational performance and financial outcomes. In particular, 

most models treat disruption as a binary condition–either a system functions or it 

fails. Yet, in real-world conditions, degradation is often gradual and partial, not 

absolute. 

This paper proposes a theoretical and simulation-based framework that integrates 

both shortage and overstock phenomena into a unified cost function. At its core is a 

disruption coefficient, which adjusts the effective supply level based on the system’s 

performance at time. By modeling both the initial shock and the potential 

overcompensation during recovery, the framework captures the “double wave” of cost 

that often characterizes disrupted logistics operations. 

The goal is to offer decision-makers a tool that not only reflects the reality of 

unpredictable supply chain environments, but also supports more adaptive and cost-

effective planning strategies. In doing so, this research contributes to ongoing efforts 

to build more robust and responsive logistics systems capable of maintaining service 

continuity under conditions of sustained uncertainty. 

 

2 Literature review 

Over time, supply chains have evolved into complex and deeply interconnected 

systems. This complexity, while beneficial for operational efficiency, often exposes 

these networks to unexpected vulnerabilities. Recent global events – from health 

crises to geopolitical tensions – have demonstrated how even localized disruptions 

can escalate into system-wide failures. These events not only affect the flow of goods 

and services but also disrupt demand patterns and increase operational costs. In the 

early 2000s, Kleindorfer and Saad made an important observation: managing supply 

chains without considering potential disruptions was no longer sustainable. They 

argued that risk assessment had to become part of daily planning, especially in global 

logistics. Following this, researchers like Ivanov et al. described what they termed the 

"ripple effect" – a way to explain how small disruptions can cascade through the 
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system, magnifying their consequences. Further studies, such as those by Sodhi and 

Tang, added that focusing only on efficiency could make supply chains too fragile, 

and instead called for designing systems that could bend without breaking. The 

structure of a supply chain – whether it's centralized, complex, or has sufficient 

buffers – also matters greatly. According to Craighead et al. and Wu et al., such 

features often determine whether a network can recover quickly after a breakdown. 

These findings laid the groundwork for a new wave of thinking around system 

resilience. Interestingly, similar patterns and concerns are visible in urban logistics. 

For example, Comi et al. (2020) proposed a scenario-based method to evaluate 

sustainable logistics strategies in Bologna, stressing that flexibility in planning is 

essential in uncertain environments. Meanwhile, Kunytska et al. (2023) highlighted 

differences in national mobility strategies, showing how countries respond differently 

to the same external shocks. Research by Nuzzolo and colleagues examined future 

urban mobility solutions, emphasizing that cities – as logistical endpoints – are also 

affected by systemic disruptions. In another dimension, Alfonsi et al. (2016) and 

Taniform et al. (2023) turned attention to the societal impacts of transport failures, 

especially road safety and economic losses. Their work implies that disruptions are 

not just technical or financial issues – they have human costs that need to be 

accounted for in decision-making. When it comes to managing inventory, classical 

models like EOQ or the Newsvendor model have served as benchmarks for decades. 

But these models assume stability – both in supply and demand – which is often 

unrealistic. Newer studies, such as those by Taleizadeh and Mokhtar, attempt to adapt 

these models to the unpredictability of real-world systems by introducing randomness 

and probabilistic delivery outcomes. What still seems to be missing in the literature is 

a model that treats shortages and overstock as interconnected parts of the same 

system. Most studies analyze one or the other, rarely both. The work of Guo et al. 

(2025) and Passarelli et al. (2023) offers some insight into this by exploring how 

inventory levels swing dramatically before and after major events. Yet even these 

contributions tend to stop short of providing tools to predict or manage 

overcompensation, where systems produce too much too late, resulting in excess 

that’s costly to store or move. A final issue concerns how disruptions themselves are 

modeled. Many researchers still treat them as binary – either a system is disrupted, or 

it isn’t. This overlooks the more realistic case, where systems degrade over time or 

function at reduced capacity. Introducing continuous or adaptive variables, like a 

disruption coefficient that changes gradually, could make models much more 

reflective of how supply chains actually respond under stress. 

 

3 Theoretical Framework 

Resilience of supply chains under disruption has been a growing focus in recent years 

due to increasing vulnerability to external shocks such as pandemics, geopolitical 

conflicts, and climate events (Kleindorfer & Saad, 2005; Ivanov et al., 2016). These 

disturbances often manifest as irregularities in both supply and demand, disrupting the 
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typical assumptions of linear, predictable flows embedded in traditional models like 

the Economic Order Quantity (EOQ) or the Newsvendor framework (Taleizadeh et 

al., 2020). These models often treat shortages and overstock separately. In practice, 

both conditions may coexist in different parts of the system due to delayed deliveries, 

unexpected demand spikes, or misaligned responses–a phenomenon known 

as overcompensation, which creates excessive inventory following a shortage 

(Passarelli et al., 2023; Comi et al., 2020). To address this, we build a theoretical 

structure that can capture this dual dynamic. At the heart of the model lies 

a disruption sensitivity indicator 𝛿𝑡 ∈ [0,1], which reflects the operational condition 

of the system during period 𝑡. When 𝛿𝑡 = 1, operations are stable; when 𝛿𝑡 = 0, a full 

disruption occurs. Intermediate values indicate partial degradation, which is more 

realistic than binary assumptions (Sodhi & Tang, 2021). The actual supply 𝑆𝑡 is then 

determined as: 

St =  δt⋅ S`t + (1−δt) ⋅ εt 

S`t is the planned supply, and 𝜀𝑡 is a stochastic term representing emergency or 

fallback logistics efforts. 

 

The system distinguishes between overstock and shortage by calculating: 

 

It=max(St−Dt,0),Bt=max(Dt−St,0) 

 

where 𝐷𝑡 is demand, 𝐼𝑡 is excess inventory, and 𝐵𝑡 is backlog (unsatisfied demand).  

 

These values feed into the cost function: 

 

𝑚𝑖𝑛
𝑆𝑡

∑ 𝐶𝑡 =

𝑇

𝑡=1

 ∑(𝐻 ⋅ 𝐼𝑡 + 𝑃 ⋅ 𝐵𝑡)

𝑇

𝑡=1

 

 

where 𝐻 and 𝑃 represent the cost coefficients for inventory holding and shortage 

penalties respectively. 

 

By summing over the planning horizon 𝑇, the objective becomes minimizing the total 

system cost: 

 

𝑚𝑖𝑛
𝑆𝑡

∑ 𝐶𝑡 =

𝑇

𝑡=1

 ∑(𝐻 ⋅ 𝐼𝑡 + 𝑃 ⋅ 𝐵𝑡)

𝑇

𝑡=1

 

 

 

This modeling structure integrates ideas from risk-aware inventory 

planning, stochastic process modeling, and adaptive logistics control. Its flexibility 

enables simulation of ripple effects and cost surges due to poor timing in supply 
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decisions (Ivanov et al., 2016; Pavlov et al., 2019), while accommodating non-binary 

degradation through 𝛿𝑡. 

 

By capturing the “double cost wave” effect–where shortage costs peak during 

disruption, and holding costs spike afterward–the framework supports more nuanced 

evaluations of adaptive responses (Katsaliaki et al., 2021). It provides a grounded 

basis for developing resilient systems capable of maintaining service levels under 

both stress and recovery phases. 

4 Results and Discussion 

In modern public transport systems, the effective integration of real-time data is 

essential for optimizing operations. The Digital Control Tower collects real-time data 

from multiple sources, such as GPS, IoT sensors, and smartphone-based ticketing 

systems, to monitor various aspects of public bus transport, including bus locations, 

traffic conditions, and passenger demand. 

The simulations revealed two distinct cost phases. During the initial disruption 

period–when 𝛿𝑡 → 0–shortage costs (𝑃 ⋅ 𝐵𝑡) were dominant, particularly in time steps 

3 to 5. In these phases, the system failed to meet demand due to unexpected supply 

failures or transportation bottlenecks. This mirrors real-world observations during 

events such as COVID-19 lockdowns and conflict-related trade blockages (Azadegan 

et al., 2020; Passarelli et al., 2023). 

However, in the recovery phase (periods 6–9), a different pattern emerged. Supply 

overshot demand as planners overcompensated, leading to inventory surpluses and 

increased holding costs (𝐻 ⋅ 𝐼𝑡). This dynamic aligns with what is often termed 

the "bullwhip effect", where corrective actions create new inefficiencies (Sasi et al., 

2024; Pavlov et al., 2019). The cumulative result is a “double wave” of costs: the first 

caused by unmet demand, the second by excessive stock buildup. 

The role of the disruption coefficient 𝛿𝑡 proved critical. Small adjustments in its value 

significantly influenced the timing and magnitude of both inventory and shortage 

costs. When 𝛿𝑡 dropped below 0.5, cost volatility spiked–suggesting that even partial 

disruptions can destabilize entire systems. This supports the view that binary 

disruption models (yes/no) are insufficient to capture real-world complexity (Sodhi & 

Tang, 2021; Kleindorfer & Saad, 2005). 

the model successfully highlighted zones of instability, where systems oscillated 

between overstock and shortage states. These zones signal windows in which 

management intervention is most impactful–either through demand smoothing, route 

adjustments, or triggering alternative supplier contracts (Comi et al., 2020; Taniform 

et al., 2023). 

The findings have direct relevance for decision-makers in logistics and supply chain 

planning. Specifically: 

Adaptive control strategies outperform static inventory rules under uncertain 

conditions. 

Monitoring δₜ in real time can serve as an early warning mechanism, flagging when 

cost-efficient operations are at risk. 
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Balanced response planning–avoiding overcompensation–is essential to minimize 

cumulative cost across recovery phases. 

These insights extend prior literature by showing how hybrid cost functions can 

capture both the short-term impact of disruption and the long-term consequences of 

reactive policies (Craighead et al., 2007; Wu et al., 2007). 

5 Conclusion 

 

This study set out to investigate the performance of supply chains under uncertain 

and disruptive conditions by developing a theoretical and simulation-based model that 

integrates both shortage and overstock dynamics. Traditional inventory management 

models often fall short when exposed to real-world turbulence, where supply lines 

falter and demand becomes volatile. Our findings reinforce the notion that rigid, 

efficiency-focused systems are not equipped to handle the layered nature of modern 

disruptions. By introducing a dynamic disruption indicator  δ t , the model captured 

the progressive degradation of system performance, rather than treating disruption as 

a binary event. This allowed for more granular assessment of how costs evolve over 

time–first driven by shortages, and later by surplus accumulation. The “double wave” 

pattern observed in the simulations emphasizes the risk of reactive overcompensation, 

a commonly overlooked phenomenon in classical models. Crucially, the research 

highlights the value of adaptive inventory control mechanisms that are sensitive to 

operational degradation. Rather than relying solely on predefined reorder rules, the 

system benefits from real-time feedback and disruption-aware adjustments. The 

inclusion of both overstock and backlog zones in the cost function broadens the 

model’s applicability to real-world logistics networks, where partial service failures 

are the norm rather than the exception. Looking ahead, the proposed framework opens 

pathways for further work. Extensions could include: Incorporating multi-echelon 

supply networks to capture interdependencies across tiers; Exploring machine 
learning techniques for forecasting  δ t δ  t based on external signals; Testing policy 

scenarios under different geopolitical or environmental disruption types. Ultimately, 

this study provides both a conceptual and practical contribution to the literature on 

resilient logistics. It bridges the gap between theoretical modeling and operational 

decision-making, equipping planners with a more flexible and responsive approach to 

managing uncertainty in complex supply systems. 
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