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Abstract. In today’s unpredictable global environment, supply chains are increasingly
exposed to disruptions caused by armed conflicts, pandemics, extreme weather
events, and geopolitical shocks. These conditions create severe imbalances between
supply and demand, often pushing traditional inventory systems beyond their
operational limits. In response to this growing complexity, this paper introduces a
hybrid modeling approach that captures the simultaneous presence of shortage and
overstock zones within disrupted supply networks.

The model incorporates a stochastic disruption coefficient §;, which reflects the real-
time operational degradation of the system. This allows for a more realistic simulation
of risk accumulation and adaptive inventory behavior. The total cost function
accounts for both holding costs and penalty costs for unmet demand. By integrating
classical methods—such as Economic Order Quantity with Overstock Costs and
Newsvendor models—the framework balances planning under uncertainty with
operational flexibility.

Simulation results reveal a two-phase cost pattern: initial disruptions drive shortage-
related losses, while overcompensation in the recovery period leads to inventory
surpluses and rising holding costs. This double-wave dynamic underscores the need
for responsive inventory control systems capable of adapting to both sudden and
prolonged disruptions.

The study contributes to the field by providing a flexible modeling tool that captures
the nuanced cost behavior of supply chains under stress. It offers valuable insights for
designing resilient logistics strategies, minimizing losses, and maintaining service
continuity in volatile environments.

Keywords: Disruptive Events, Supply Chain Shocks, Black Swan Events,
Shock Scenario, Supply Shock, System Disruption, Failure Mode, Emergency
Mode, Critical Incident, Critical Event, Perturbation State.

1 Introduction

In recent years, supply chains have faced an unprecedented range of disruptions —
from global health crises and political conflicts to environmental disasters and market
instabilities. These events have highlighted the limitations of conventional supply
chain models, which often rely on stable conditions and predictable flows. In reality,
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modern logistics systems operate in a far more volatile environment, where
disturbances can ripple across networks, triggering mismatches between supply and
demand and creating cascading operational failures (Kleindorfer & Saad, 2005;
Ivanov et al., 2016).

The COVID-19 pandemic, for instance, exposed how quickly global supply chains
can unravel. As demand patterns shifted and transportation routes became
constrained, many firms found themselves either unable to meet customer needs or
burdened with excess inventory. This duality—shortage on one end, surplus on the
other-reveals a critical gap in existing inventory management approaches, which
typically model these phenomena in isolation (Passarelli et al., 2023; Sodhi & Tang,
2021).

While previous research has explored the role of resilience, redundancy, and
flexibility in supply chain design (Craighead et al., 2007; Pavlov et al., 2019), there
remains a need for models that can dynamically reflect how disruptions evolve over
time and impact both operational performance and financial outcomes. In particular,
most models treat disruption as a binary condition—either a system functions or it
fails. Yet, in real-world conditions, degradation is often gradual and partial, not
absolute.

This paper proposes a theoretical and simulation-based framework that integrates
both shortage and overstock phenomena into a unified cost function. At its core is a
disruption coefficient, which adjusts the effective supply level based on the system’s
performance at time. By modeling both the initial shock and the potential
overcompensation during recovery, the framework captures the “double wave” of cost
that often characterizes disrupted logistics operations.

The goal is to offer decision-makers a tool that not only reflects the reality of
unpredictable supply chain environments, but also supports more adaptive and cost-
effective planning strategies. In doing so, this research contributes to ongoing efforts
to build more robust and responsive logistics systems capable of maintaining service
continuity under conditions of sustained uncertainty.

2 Literature review

Over time, supply chains have evolved into complex and deeply interconnected
systems. This complexity, while beneficial for operational efficiency, often exposes
these networks to unexpected vulnerabilities. Recent global events — from health
crises to geopolitical tensions — have demonstrated how even localized disruptions
can escalate into system-wide failures. These events not only affect the flow of goods
and services but also disrupt demand patterns and increase operational costs. In the
early 2000s, Kleindorfer and Saad made an important observation: managing supply
chains without considering potential disruptions was no longer sustainable. They
argued that risk assessment had to become part of daily planning, especially in global
logistics. Following this, researchers like Ivanov et al. described what they termed the
"ripple effect" — a way to explain how small disruptions can cascade through the



system, magnifying their consequences. Further studies, such as those by Sodhi and
Tang, added that focusing only on efficiency could make supply chains too fragile,
and instead called for designing systems that could bend without breaking. The
structure of a supply chain — whether it's centralized, complex, or has sufficient
buffers — also matters greatly. According to Craighead et al. and Wu et al., such
features often determine whether a network can recover quickly after a breakdown.
These findings laid the groundwork for a new wave of thinking around system
resilience. Interestingly, similar patterns and concerns are visible in urban logistics.
For example, Comi et al. (2020) proposed a scenario-based method to evaluate
sustainable logistics strategies in Bologna, stressing that flexibility in planning is
essential in uncertain environments. Meanwhile, Kunytska et al. (2023) highlighted
differences in national mobility strategies, showing how countries respond differently
to the same external shocks. Research by Nuzzolo and colleagues examined future
urban mobility solutions, emphasizing that cities — as logistical endpoints — are also
affected by systemic disruptions. In another dimension, Alfonsi et al. (2016) and
Taniform et al. (2023) turned attention to the societal impacts of transport failures,
especially road safety and economic losses. Their work implies that disruptions are
not just technical or financial issues — they have human costs that need to be
accounted for in decision-making. When it comes to managing inventory, classical
models like EOQ or the Newsvendor model have served as benchmarks for decades.
But these models assume stability — both in supply and demand — which is often
unrealistic. Newer studies, such as those by Taleizadeh and Mokhtar, attempt to adapt
these models to the unpredictability of real-world systems by introducing randomness
and probabilistic delivery outcomes. What still seems to be missing in the literature is
a model that treats shortages and overstock as interconnected parts of the same
system. Most studies analyze one or the other, rarely both. The work of Guo et al.
(2025) and Passarelli et al. (2023) offers some insight into this by exploring how
inventory levels swing dramatically before and after major events. Yet even these
contributions tend to stop short of providing tools to predict or manage
overcompensation, where systems produce too much too late, resulting in excess
that’s costly to store or move. A final issue concerns how disruptions themselves are
modeled. Many researchers still treat them as binary — either a system is disrupted, or
it isn’t. This overlooks the more realistic case, where systems degrade over time or
function at reduced capacity. Introducing continuous or adaptive variables, like a
disruption coefficient that changes gradually, could make models much more
reflective of how supply chains actually respond under stress.

3 Theoretical Framework

Resilience of supply chains under disruption has been a growing focus in recent years
due to increasing vulnerability to external shocks such as pandemics, geopolitical
conflicts, and climate events (Kleindorfer & Saad, 2005; Ivanov et al., 2016). These
disturbances often manifest as irregularities in both supply and demand, disrupting the



typical assumptions of linear, predictable flows embedded in traditional models like
the Economic Order Quantity (EOQ) or the Newsvendor framework (Taleizadeh et
al., 2020). These models often treat shortages and overstock separately. In practice,
both conditions may coexist in different parts of the system due to delayed deliveries,
unexpected demand spikes, or misaligned responses—a phenomenon known
as overcompensation, which creates excessive inventory following a shortage
(Passarelli et al., 2023; Comi et al., 2020). To address this, we build a theoretical
structure that can capture this dual dynamic. At the heart of the model lies
a disruption sensitivity indicator §; € [0,1], which reflects the operational condition
of the system during period t. When §; = 1, operations are stable; when §; = 0, a full
disruption occurs. Intermediate values indicate partial degradation, which is more
realistic than binary assumptions (Sodhi & Tang, 2021). The actual supply S; is then
determined as:

St: 5[S‘[+(1_5t) &

S is the planned supply, and & is a stochastic term representing emergency or
fallback logistics efforts.

The system distinguishes between overstock and shortage by calculating:
It=max(St—Dt,0),Bt=max(Dt—St,0)
where D; is demand, I; is excess inventory, and B; is backlog (unsatisfied demand).

These values feed into the cost function:

T T
ngnz C, = Z(H I, +P-B)
t=1 t=1

where H and P represent the cost coefficients for inventory holding and shortage
penalties respectively.

By summing over the planning horizon T, the objective becomes minimizing the total
system cost:

T T
77}%112 Cf: Z(H’It‘l'P'Bt)
t=1 t=1

This  modeling structure  integrates ideas  from risk-aware  inventory
planning, stochastic process modeling, and adaptive logistics control. Its flexibility
enables simulation of ripple effects and cost surges due to poor timing in supply



decisions (Ivanov et al., 2016; Pavlov et al., 2019), while accommodating non-binary
degradation through §&;.

By capturing the “double cost wave” effect—where shortage costs peak during
disruption, and holding costs spike afterward—the framework supports more nuanced
evaluations of adaptive responses (Katsaliaki et al., 2021). It provides a grounded
basis for developing resilient systems capable of maintaining service levels under
both stress and recovery phases.

4 Results and Discussion

In modern public transport systems, the effective integration of real-time data is
essential for optimizing operations. The Digital Control Tower collects real-time data
from multiple sources, such as GPS, IoT sensors, and smartphone-based ticketing
systems, to monitor various aspects of public bus transport, including bus locations,
traffic conditions, and passenger demand.

The simulations revealed two distinct cost phases. During the initial disruption
period—when &, — 0—shortage costs (P - B;) were dominant, particularly in time steps
3 to 5. In these phases, the system failed to meet demand due to unexpected supply
failures or transportation bottlenecks. This mirrors real-world observations during
events such as COVID-19 lockdowns and conflict-related trade blockages (Azadegan
et al., 2020; Passarelli et al., 2023).

However, in the recovery phase (periods 6-9), a different pattern emerged. Supply
overshot demand as planners overcompensated, leading to inventory surpluses and
increased holding costs (H - I;). This dynamic aligns with what is often termed
the "bullwhip effect", where corrective actions create new inefficiencies (Sasi et al.,
2024; Pavlov et al., 2019). The cumulative result is a “double wave” of costs: the first
caused by unmet demand, the second by excessive stock buildup.

The role of the disruption coefficient §; proved critical. Small adjustments in its value
significantly influenced the timing and magnitude of both inventory and shortage
costs. When &, dropped below 0.5, cost volatility spiked—suggesting that even partial
disruptions can destabilize entire systems. This supports the view that binary
disruption models (yes/no) are insufficient to capture real-world complexity (Sodhi &
Tang, 2021; Kleindorfer & Saad, 2005).

the model successfully highlighted zones of instability, where systems oscillated
between overstock and shortage states. These zones signal windows in which
management intervention is most impactful—either through demand smoothing, route
adjustments, or triggering alternative supplier contracts (Comi et al., 2020; Taniform
et al., 2023).

The findings have direct relevance for decision-makers in logistics and supply chain
planning. Specifically:

Adaptive control strategies outperform static inventory rules under uncertain
conditions.

Monitoring §; in real time can serve as an early warning mechanism, flagging when
cost-efficient operations are at risk.



Balanced response planning—avoiding overcompensation—is essential to minimize
cumulative cost across recovery phases.

These insights extend prior literature by showing how hybrid cost functions can
capture both the short-term impact of disruption and the long-term consequences of
reactive policies (Craighead et al., 2007; Wu et al., 2007).

5 Conclusion

This study set out to investigate the performance of supply chains under uncertain
and disruptive conditions by developing a theoretical and simulation-based model that
integrates both shortage and overstock dynamics. Traditional inventory management
models often fall short when exposed to real-world turbulence, where supply lines
falter and demand becomes volatile. Our findings reinforce the notion that rigid,
efficiency-focused systems are not equipped to handle the layered nature of modern
disruptions. By introducing a dynamic disruption indicator & t, the model captured
the progressive degradation of system performance, rather than treating disruption as
a binary event. This allowed for more granular assessment of how costs evolve over
time—first driven by shortages, and later by surplus accumulation. The “double wave”
pattern observed in the simulations emphasizes the risk of reactive overcompensation,
a commonly overlooked phenomenon in classical models. Crucially, the research
highlights the value of adaptive inventory control mechanisms that are sensitive to
operational degradation. Rather than relying solely on predefined reorder rules, the
system benefits from real-time feedback and disruption-aware adjustments. The
inclusion of both overstock and backlog zones in the cost function broadens the
model’s applicability to real-world logistics networks, where partial service failures
are the norm rather than the exception. Looking ahead, the proposed framework opens
pathways for further work. Extensions could include: Incorporating multi-echelon
supply networks to capture interdependencies across tiers; Exploring machine
learning techniques for forecasting &t & t based on external signals; Testing policy
scenarios under different geopolitical or environmental disruption types. Ultimately,
this study provides both a conceptual and practical contribution to the literature on
resilient logistics. It bridges the gap between theoretical modeling and operational
decision-making, equipping planners with a more flexible and responsive approach to
managing uncertainty in complex supply systems.
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